
Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 1

Access the Data-Driven Layer of
Progressive Delivery with Bugsnag

https://smartbear.com

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 2

 4 | What Is Progressive Delivery?
A Brief History

Core Tenets

Examples in the Wild

Pros & Cons

What's Next?

 9 | How Progressive Delivery Works
Creating the Right Culture

Deployment Strategies

How to Deploy Features

Monitoring Progressive Rollouts

Common Challenges & Solutions

What's Next?

 13 | How Bugsnag Enables Progressive Delivery
Real-time Observability

Go/No-Go Stability Scores

Search and Segment

Getting Started

 16 | Best Practices and Bottom Line

Contents

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 3

The odds are you've noticed your favorite web applications

previewing a new look or feature. For example, Google might

encourage you to opt in to a new Gmail interface, or Facebook

may subtly change how a comment looks. These small changes

represent a huge paradigm shift from the massive overhauls

commonly seen in the past.

Tech companies regularly roll out small changes to a tiny subset

of users to ensure they improve the user experience and don’t

introduce any errors. Rather than trying to catch every error in

automated tests, they’re trying to minimize the blast radius of

errors that reach production. As a result, users likely see fewer

errors and have a better experience.

In this e-book, we will take a closer look at this concept of

progressive delivery, how it works under the hood, best practices

to keep in mind, and how Bugsnag can help.

Access the Data-Driven Layer of
Progressive Delivery with Bugsnag

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 4

Progressive delivery is the latest iteration of

best practices for software development,

building upon the core tenets of continuous

integration and continuous delivery (CI/CD).

The goal is to ship new features faster, reduce

the blast radius of bugs, and improve the

user experience by incrementally rolling out

software to small groups of users rather than

everyone at once.

It’s also a shift in mindset: Rather than relying

on automated testing to catch every error

prior to deployment, progressive delivery

acknowledges that mistakes will happen and

attempts to catch them early before they reach

the majority of users. As a result, there’s less

hesitation to deploy new code, and fewer users

come across bugs in production.

Let's look at the origins of progressive delivery,

its two core components, why you might want

to use it, and some examples in the wild.

What Is Progressive
Delivery?

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 4

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 5

A Brief History

Traditionally, software development

involved developing a complete product

and then releasing it to the public. Not

surprisingly, these "waterfall" development

projects often exceeded their budget and

failed to meet customer expectations.

That's because stakeholders don't really

know what customers want without

delivering some form of the product..

The Agile Manifesto introduced the idea of

“early and continuous delivery of valuable

software” – or iterative development.

Rather than waiting until the entire project

was complete, Agile teams split a project

into multiple sprints and release working

software at regular intervals. That way,

stakeholders have an opportunity to collect

real-time customer feedback and make

changes in the following iteration.

Progressive delivery builds on the foundation

of continuous delivery with gradual feature

rollouts, canarying, A/B testing, and

observability. Instead of releasing features

to all users, progressive delivery exposes

features to a small subset. That way, there’s

time to identify quality issues and assess user

engagement before reaching everyone.

Core Tenets

Progressive delivery involves gradually

rolling out new features and delegating

responsibilities for each feature to specific

team members. In addition to minimizing the

number of errors reaching production users,

these processes ensure that the right people

How an Agile development process typically works. Source: Wikimedia Commons / Lakeworks, CC BY-SA 4.0

https://agilemanifesto.org/principles.html
https://commons.wikimedia.org/wiki/File:Scrum_process.svg

6 | Access the Data-Driven Layer of Progressive Delivery with Bugsnag

are responsible for different features or
releases at different times during the cycle.

The two core tenets are:

1. Release Progressions The number of

users exposed to new features at a pace

appropriate to your business. By adding

more checkpoints for testing and feedback,

you can improve the quality of each new

feature. The frequency of releases will

depend on the organization and its goals.

2. Progressive Delegation Delegating control

of a feature to the owner most responsible

for its outcome. While engineers initially

control a feature, a product manager

may be the most responsible owner after

launch. At the same time, different teams

may be responsible for different features.

As we discuss later, the release progressions

and progressive delegation involve different

strategies and tools. For instance, release

progressions might rely on ring deployments

and feature flags, while progressive delegation

requires observability and team communication.

But it’s tying these concepts together that is the

biggest challenge for most organizations.

Examples in the Wild

Most large tech companies use progressive

delivery. For example, Zend reports that Netflix

deploys 100 times per day, and Amazon deploys

code every 11 seconds! Big companies aren’t

always the best resource for smaller organizations,

but organizations like GitHub, Microsoft, and other

tech companies provide a helpful example of

what’s possible, as we’ll see below.

GitHub's "staff ships" approach involves unveiling

new functionality to internal users via canary

deployments. Since the company leverages

its own source control tools in development,

it’s in a unique position to test its features and

identify any problems before releasing them to

external users. And as a result, they can be more

confident with their deployments.

https://www.zend.com/blog/continuous-delivery-benefits-and-barriers

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 7

Microsoft's "ring deployments" involve dividing

users into relevant groups, where each ring

represents a different stage of a rollout with well-

defined performance criteria. For example, the

company's first ring might have relatively few beta

users with higher fault tolerance, whereas later

rings may have more enterprise users with much

lower fault tolerance.

Pros and Cons
Progressive delivery has several obvious benefits

but also some important risks. Before adopting

progressive delivery, it’s essential to understand

Microsoft’s Ring Deployments involve several different cycles. Source: Microsoft

https://learn.microsoft.com/en-us/azure/devops/migrate/phase-rollout-with-rings?view=azure-devops

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 8

these pros and cons. That way, you know what

success metrics to watch from a business standpoint

and, simultaneously, be mindful of some common

pitfalls along the way.

Shifting testing into production has several

benefits:

 | Faster Deployments: Progressive delivery

provides safeguards and control levers that give

development teams the confidence they need

to deploy code faster. Development teams don’t

have to spend undue time stressing about the

stability of a release since they know it will only

impact a handful of users (although stability is still

important).

 | More Stability: The safeguards that progressive

delivery introduces also help preserve system

stability by limiting the impact of any individual

bug. Rather than clicking the deploy button and

praying that nothing goes wrong, organizations

can rest easy knowing that they will only impact a

few users and can quickly roll back a release.

 | Better Collaboration: Progressive delegation

also helps increase operational efficiency and

collaboration between engineers and non-

engineers. With the right observability tools

in place, anyone on the team can see how

new features or releases impact stability while

working together to create the best possible user

experience.

The biggest drawback of progressive delivery relates

to scale. Small or complex applications without many

users or much traffic may require a longer time for

users to explore a sufficient number of code paths

to be confident in a release. As a result, teams using

progressive delivery on smaller applications must be

patient to reap the benefits.

Progressive delivery may also introduce complexity

without the right strategies and tools. If you don’t

already have a high level of observability with a well-

oiled deployment process, progressive delivery could

end up causing more problems than it solves.

What's Next?

This next section will look at how progressive delivery

works in practice, including phased rollouts, feature

flagging, and experimentation. We'll also look at

some key challenges that you might come across

and some potential solutions to consider.

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 9

Progressive delivery may sound complex and

difficult to implement. For example, you need to

segment users into relevant groups and write

extra code to display features to specific groups

without impacting all users. Fortunately, a handful

of well-established strategies and robust tools

help simplify and streamline the process.

Let's look at common progressive delivery

strategies, popular approaches to implementing

them, and how to overcome challenges you

might encounter.

Creating the Right Culture

Progressive delivery isn’t a set-and-forget strategy

where you can install tools and put your team

on autopilot. As we mentioned earlier, a shift in

mindset requires the buy-in from technical and

non-technical team members. As a result, it’s a

good idea to ensure that your organization is ready

before implementing strategies and tools.

There are two key steps to this process:

1. Set Clear Goals – Start by ensuring everyone

understands the benefits of progressive de-

livery and how they’re involved in the process.

For example, product teams can get faster

feedback from customers, quality assurance

will have more time to test, and developers

have a faster feedback loop.

2. Create Communication Channels – Many

organizations operate with technical and

non-technical silos, which can quickly become

problematic when implementing progressive

delivery. Whether you use in-person meetings

or communication tools like Slack, it’s imperative

to keep everyone on the same page through-

out the process.

Getting buy-in from the entire team makes

an enormous difference in long-term success.

Implementing new processes often fails because

the organization wasn’t ready for it. As a result,

progressive delivery requires that everyone

understand the tools and processes, including non-

technical team members (e.g., business analysts).

Deployment Strategies

The first step is segmenting users into relevant

groups. While there are many different approaches

to segmentation, the most common methods involve

segregating groups using certain attributes or

randomly selecting a subset. Ultimately, the correct

choice depends on the specific application and user

base, as well as your organization’s risk tolerance.

How Progressive
Delivery Works

10 | Access the Data-Driven Layer of Progressive Delivery with Bugsnag

Targeted Rollouts

Targeted rollouts involve creating a select group

of users with certain attributes and exposing them

to new features or releases. If there aren’t any

issues with the small group, you may then decide

to deploy the feature to every user. If there is a

problem, you can quickly address the change and

deploy a fix until the feature or release is stable

enough for everyone.

Some examples of targeted rollouts include:

 | An organization deploying new releases to a

small group of beta users that are comfortable

trying new features and willing to provide

insightful feedback

 | A food delivery app releasing new features in

a small city before moving on to larger markets

where scalability becomes a concern

Ring Deployments

Ring deployments are a type of targeted roll-

out where user groups are assigned to rings. In

addition, ring deployments may only release to

a percentage of a target cohort initially and then

increase it over time. As a result, ring deployments

are one of the most common strategies across large

tech companies.

Some examples of ring deployments include:

 | A food delivery app may roll out changes to

beta users in a single city for the first ring, a

group of small cities in the second ring, and

then larger markets in the third ring.

How to Deploy Features

The next step is developing the technical capabilities

to implement these deployment strategies. Again,

there are countless strategies that organizations

might use to manage releases, but the most common

approaches include feature flags and blue-green

deployments. And, like deployment strategies, the

right decision depends on the organization’s goals.

Feature Flags

Feature flags are a software development tool

enabling teams to turn that functionality on or off. In

other words, they separate code deployment from a

feature release. And they open the door to the A/B

testing and experimentation necessary to make the

most out of progressive delivery.

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 11

From a technical standpoint, feature flags range

from a simple IF statement to a complex decision

tree involving multiple variables. Static feature flags

are hard-coded into a release, whereas dynamic

feature flags can change at runtime using an admin

interface or third-party tool. But adding feature flags

to an application can quickly become complex.

Fortunately, several third-party platforms have

popped up to simplify the process. For example,

Split.io, an official partner of SmartBear, provides an

easy-to-use SDK that makes it easy to add feature

flags within the application and toggle them using

a web-based interface. That way, business-facing

teams can test features while developers focus on

building features rather than feature flags.

How It Fits with CI/CD

Feature flags and blue-green deployments must

integrate with existing continuous integration and

deployment services. For example, a common

approach involves developers checking in a new

feature to a continuous integration process that

triggers a canary release. After a manual review, the

continuous delivery server deploys it to early adopt-

ers and then to every user.

From a technical standpoint, these processes

involve a combination of continuous integration

and deployment servers, such as Jenkins or CircleCI.

If you’re using blue-green deployment, these

platforms may also need to integrate with load

balancers, DNS tools, or other solutions to ensure

that deployments reach the correct users.

Monitoring Progressive Rollouts
The final step in progressive delivery is monitoring

deployments with a standard set of tools and metrics.

After all, if you don’t have a well-defined success

metric, you’ll never know when it’s time to roll out a

deployment to the next ring or when it’s ready for

everyone. In addition, you need to have a plan for

handling rollbacks and mitigating any issues that arise.

Choosing Metrics
There are countless metrics that organizations

might monitor to assess stability and performance,

but they typically fall into stability, performance, or

business categories. Like the deployment strate-

gies and technical considerations, the best metrics

will depend on the specific application and its

users and requirements.

 | Stability – Application stability metrics are

essential to understanding when a release

is ready for the next stage. For instance, you

may want to look at error reports, crash logs,

refresh rates, and other signals to evaluate

stability. In the next section, we’ll look at how

Bugsnag can help automate stability analysis.

 | Performance – Application performance

looks at speed and resource consumption. For

instance, you might look at CPU or memory

usage to determine if a new feature or release

is causing scalability issues. And, of course,

speed is a critical consideration when creating

the best user experience.

 | Business – Business metrics are often an

after-thought when evaluating new features

or releases, but they’re essential to minimize

code bloat and ensure a great user experience.

For instance, you might measure click-through

rates, time on page, or other usage metrics to

assess if the feature adds value.

Handling Rollbacks

Rollbacks should be relatively rare, but it’s essential

to have a plan in place for when they’re needed.

While rolling back a release isn’t necessarily chal-

lenging from a technical standpoint, the manage-

ment overhead required to diagnose the problem,

assign a team member to fix it, and integrate any

changes into the next release can be daunting. Even

the most well-oiled machines struggle with it.

https://www.split.io/product/integrations/bugsnag/

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 12

Fortunately, observability tools can help streamline

the process. For instance, Bugsnag makes it easy to

identify and prioritize the most impactful errors, as-

sign them to the right people, and generate enough

data to debug problems quickly. We’ll take a closer

look at how it works in the next section, where we

dive into the platform’s unique capabilities.

Common Challenges & Solutions

Progressive delivery is a complex process with

several moving parts. As a result, development

teams face many challenges when implementing

these strategies. The good news is that progressive

delivery has been around for a while, and most

challenges have solutions or workarounds that you

can use to stay on track.

Starting Too Early

Progressive delivery is a complex process that’s not

right for every team. If you don’t have robust contin-

uous integration and deployment (CI/CD) processes,

trying to implement progressive delivery could

cause more headaches than it solves. As a result, it’s

imperative to have a solid deployment setup before

diving into a new paradigm.

You also need the right observability solutions in

place to detect problems. For instance, a blue-green

deployment may face “race conditions” where

data is read or written by multiple versions of the

application simultaneously. Without observability

solutions capable of drilling down into the production

stack, it’s impossible to trace these bugs.

Releasing Too Quickly

Progressive delivery involves deploying new features

or releases to small groups of users, meaning it can

take a long time to become confident in a release.

If you have a complex application with little traffic,

it could take hours or even days to collect enough

data to garner the confidence to deploy a new

release to all users.

Grouping several changes into a single release

helps mitigate these issues. While it may be harder

to debug and roll back larger releases, they may be

necessary to maintain the right release cadence for

your development team. Otherwise, you could end

up with a huge backlog of features while waiting for

enough data from earlier ones.

Failing to Write Tests

Progressive delivery shouldn’t be a substitute

for automated tests. While integration tests can

be boring or challenging to write, skipping them

and trying out untested features on small groups

of users in production is never a good idea.

Progressive delivery should be a safety net to roll

back unexpected problems rather than a first-line

testing strategy.

When a rollback occurs, it’s a good idea to, as a

team, conduct a post-mortem meeting discussing

what happened and how to prevent it in the

future. Ideally, progressive delivery should involve

progressively fewer rollbacks. In the words of

Dan Lorenc, you should treat it as a parachute

rather than a hammock.

What’s Next?

In the next section, we'll look at how Bugsnag

can help enable progressive delivery – and

progressive delegation – with its unique

observability capabilities.

https://dlorenc.medium.com/pitfalls-of-progressive-delivery-114c6e3f9dbb

 13

Feature flags and blue-green deployment

simplify release progressions, but it’s challenging

to integrate error detection with progressive

delegation. For example, you don’t want to roll back

a release unless necessary, and assigning bugs can

quickly become a considerable challenge in multi-

team apps. Fortunately, observability can help

address these issues and streamline the process.

Bugsnag makes it easy to identify and prioritize

the most impactful errors, assign them to the right

teams, and empower developers with the debug-

ging tools they need to implement quick fixes and

keep progressive delivery on track. Essentially, it

provides the data-driven layer of progressive

delivery, delivering actionable insights to your team.

Let’s look at some of the most significant

features that can help you implement an

effective progressive delivery strategy across

your organization.

Real-time Observability

Bugsnag makes it easy to understand how feature

flags and experiments impact the user experience.

For example, you can configure alerts that notify

teams responsible for developing and rolling out a

particular feature when an error occurs with them.

How Bugsnag Enables
Progressive Delivery

Bugsnag makes it easy to drill down into what features are causing errors. Source: Bugsnag

 14

You can also zoom into the errors occurring within

individual feature flags to diagnose problems.

In addition, the platform makes it easy to determine

if unusual application-wide error activity is

associated with a feature flag. Using a timeline

view, you can set up pivot tables for feature flags to

isolate errors that occurred when the feature flag

was enabled. That way, you can assign problems to

relevant teams to fix quickly.

Go/No-Go Stability Scores

Progressive delivery is all about balancing bugs with

features. Rather than pursuing perfect software

before release, development teams try to release

imperfect software and fix bugs before they impact

several users. But, to do that, you need an easy way

to determine if the number and severity of errors

cross an acceptable threshold.

Bugsnag’s stability scores provide a definitive metric

for deciding when a release is ready for the next ring

or group of users. When a stability score turns green,

developers can focus on building the next feature

rather than troubleshooting existing features. And,

when a stability score turns red, the platform shows

you the top errors occurring in a specific release.

Search and Segment
Prioritizing errors is only half the equation. After

identifying errors, you need to alert the relevant

teams or developers to implement a fix. This

process can be a challenge in multi-team

apps where different teams have different

responsibilities – especially if you want to avoid

“notification fatigue” by notifying every developer

of every problem.

Bugsnag makes it easy to segment errors using

bookmarks. For instance, you might segment

front-end and back-end errors and configure

alerts that only show relevant errors to relevant

teams. That way, developers can quickly see the

errors that apply to them and prioritize them using

stability scores to be as efficient as possible.

Stability scores make
it easy to determine
what’s good to go
and what needs work.
Source: Bugsnag

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 15

Getting Started

Bugsnag’s Releases Dashboard and new Features

Dashboard make it easy for developers to under-

stand if they need to roll back a release version or

feature to preserve stability. In addition, they can

quickly assess if a feature or release is responsible

for a specific exception. A search builder lets you

filter your inbox for errors exclusive to a particular

release or feature flag.

 Currently, the Features and Releases dashboard

is available for client-side applications, including

Android, iOS, React Native, Flutter, Unity, Unreal

Engine, Expo, JavaScript (browser-based and Node.

JS-based), and Electron. Bugsnag also works constantly

to add new platforms. Contact us to discuss your

platform and if we can support it.

If you’re a current Bugsnag user, you can start

monitoring features and experiments in the dash-

board by configuring the Bugsnag library in your

application. You can learn more about how to set

up the Features and Releases dashboard by reading

our documentation with specific guides for each

popular platform.Easily create alerts for specific features or segments to avoid notification fatigue. Source: Bugsnag

https://docs.bugsnag.com/product/features-experiments/
https://docs.bugsnag.com/product/features-experiments/#declaring-feature-flag-and-experiment-usage
https://docs.bugsnag.com/product/features-experiments/#declaring-feature-flag-and-experiment-usage

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 16

Best Practices and
Bottom Line

implement feature flags from the get-go, many

organizations may need to step back and fix

things like source code management before even

discussing progressive delivery concepts.

 | Focus on the Outcomes – Many organizations

don’t fully understand how to use progressive

delivery. While shipping faster is a common goal,

the most powerful benefits include long-term

experimentation, A/B testing, and personalization.

Implementing these will often require an

outcome-focused mindset.

While the process sounds complex, Bugsnag and

other new technologies have made it easier than ever.

Development teams can quickly deploy code with

feature toggles that product managers can use to roll

out changes progressively. At the same time, Bugsnag

and other tools enhance observability to identify

problems and route them to the right teams quickly.

Progressive delivery represents an evolution from

continuous delivery. Rather than trying to catch every

error with automated tests, progressive delivery

incrementally rolls out new features to a small

subset of users to test in production. As a result,

development teams can move faster while improving

the overall user experience.

Some best practices to keep in mind include:

 | Start with Culture – Most progressive delivery

implementations fail because the organization

wasn’t ready for change. Before installing any

tools, start by getting buy-in from team members

and understanding what approaches and tools

might work best with existing workflows to

minimize disruption.

 | Nail the Prerequisites – Progressive delivery

requires a solid continuous integration and

deployment workflow. Rather than trying to

Start 14-Day Free Trial Request a Demo

Clarity on what to do next.

Monitor your application stability non-stop, and get the
visibility you need to confidently make your next move without

digging for information.

https://app.bugsnag.com/user/new/
https://www.bugsnag.com/demo-request
https://studio.cucumber.io/users/sign_up/
https://studio.cucumber.io/users/sign_up/
https://www.bugsnag.com/?utm_medium=referral&utm_source=smartbear.com&utm_campaign=prodnav

https://www.bugsnag.com/blog/appstabilityseriesgainprecisionandreducenoise

https://www.bugsnag.com/blog/acc-progressive-delivery

https://www.bugsnag.com/blog/progressive-delivery-accelerate-app-releases-while-minimizing-bugs

https://www.bugsnag.com/blog/features-experiments-dashboard

https://launchdarkly.com/blog/what-is-progressive-delivery-all-about/

https://dlorenc.medium.com/pitfalls-of-progressive-delivery-114c6e3f9dbb

https://d1.awsstatic.com/whitepapers/AWS_Blue_Green_Deployments.pdf

Resources Articles

https://smartbear.com
https://www.bugsnag.com/blog/appstabilityseriesgainprecisionandreducenoise
https://www.bugsnag.com/blog/acc-progressive-delivery
https://www.bugsnag.com/blog/progressive-delivery-accelerate-app-releases-while-minimizing-bugs
https://www.bugsnag.com/blog/features-experiments-dashboard
https://launchdarkly.com/blog/what-is-progressive-delivery-all-about/
https://dlorenc.medium.com/pitfalls-of-progressive-delivery-114c6e3f9dbb
https://d1.awsstatic.com/whitepapers/AWS_Blue_Green_Deployments.pdf

Access the Data-Driven Layer of Progressive Delivery with Bugsnag | 19

https://smartbear.com

